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An analytical method of determining the compressibility and virial coefficients 
from the experimental results by the Burnett method is described. 

i. INTRODUCTION 

One of the most well-known methods of measuring the compressibility of gases and gas mix- 
tures is the Burnett method [i]. This method and its various modifications can be used in the 
range of temperatures 80-1200~ and for pressures up to 70 MPa [2-5]. In the isochoric varia- 
tion of the method [6-8] one can perform accurate measurements in cases where PV is a rapidly 
varying function of P, i.e., close to the saturation curve, near the critical point, etc. [9- 
ii]. The main advantage of the method is its high precision and relative simplicity experi- 
mentally, since the method does not require an exact determination of the volume and quantity 
of material, or the use of liquid mercury as a seal, etc. The natural experimentally measur- 
able quantities are the pressure and temperature, which can be determined with higil precision. 
As a result, the values of the compressibility and virial coefficients can be determined with 
high precision. For example, in a typical measurement with an error range of 0.01-0.03% in 
the pressure and 0.01-0.02OK in the temperature, one can determine the value of Z with an er- 
ror less than 0.1% and B(T) to within 0.3 cm3/mole. 

The fundamental equation in the Burnett method can be written in the form 

f 

= Pj (ZoiPo) II  (1) 
i = l  

where Pj and Z~. are the pressure and compressibility of the gas after the j-th expansion; Po, 
Zo, initial values of the pressure and compressibility; N=, geometrical cell constant at zero 
pressure, N~ = (V I + VII)/VI; ~, correction for barometric and isothermal (when the volumes 
V I and VII are at different temperatures) deformations. 

It follows from (i) that if the values of N~ and Zo/Po (second Burnett constant) are 
known, then the compressibility can be calculated at any pressure. In several recent papers 
[12-14] the fundamental relation (i) is expressed in virial form 

p ~ = _  P o R T  �9 1 @ ~ B ~  �9 Po ~-1 
i [s ' (2) 

i : 1  i : i  

which opens up many possibilities for different approaches to determining the unknown quanti- 
ties N~, Po = I/[(Zo/Po)RT], and B k. 

Originally, Burnett proposed to determine both constants by graphical analysis using the 
equation 

N = l i m P j ~ 6 P ~ ,  (3) 
P ~ O  

Po/Zo ~ lira P j N i N 2  . . �9 N j ,  (4) 
P ~ O  
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where Nj = N~ is the cell constant for the j-th expansipn. However, the values obtained in 
this me~hod ar~ poor, particularly N~. Hence several new papers have appeared devoted to de- 
termining these quantities. 

Miller [15, 16] and Silberberg [17] linearized the equations and, using a method resem- 
bling the method of least-squares, found corrections to the values of the constants. Canfield 
[18, 19], in order to find an accurate value of N~, used the linear dependence of (Z -- l)/p 
on p for low pressures. However, it is well-known that in these coordinates, the scatter of 
the experimental points increases greatly with decreasing density; this makes it difficult to 
extrapolate the experimental isotherms to zero density in order to find N=. Hoover, Canfield, 
Kobayashi, and Leland [20] worked out a direct iterative method of getting the compressibility 
and lowest-order virial coefficients directly from the pressure measurements. The disadvan- 
tage of this method is that it is inapplicable for temperatures T/T c ~ 0.75 and even for T/T c < 
1.0 does not give very accurate results. In addition, one is limited to pressures where the 
equation of state with second and third virial coefficients is applicable. Silberberg, Lin, 
and McKetta [21] have described an accurate graphical method of analyzing the results, but it 
is very laborious and its theoretical foundation is not completely rigorous. Tsiklis, Lin- 
shits, and Semenova [22] have studied the special case of (2) with the first two terms to de- 
termine po and B2. Obviously, this method gives good results only when the behavior of the 
gas can be described by an equation of state with the second virial coefficient over a wide 
range of low and moderate pressures; this is far from being true in all cases. A novel method 
of determining both constants was proposed by Altunin and Koposhilov [23], in which the values 
of N~ and Zo/Po were found from the corresponding corrections to the measured pressures. 

A general approach to the problem was proposed by Barieau and Dalton [24] based on the 
nonlinear least-squares method and a search for the unknown parameters according to the pro- 
cedure of Newton. This method has been developed further by Hall and Canfield [12], and Wax- 
man et al. [14, 25], in which the quality of the experimental values was looked at more close- 
ly, and more rigorous and better computational methods were used. Wielopolski and Warnowny 
[13] proposed an analytical method of finding N=, Po, and B k which is simpler than in [12, 
25]. However, the virial coefficients are simply identified with the corresponding coeffi- 
cients of the polynomial in (2); this is not rigorous in general and does not give the true 
values of the second and third virial coefficients [26, 27], 

Hence at present the most rigorous and accurate methods of finding the compressibility 
and lowest order virial coefficients from the Burnett data are the methods of Hall--Canfield 
and Waxman et al. However, the practical application of these methods, particularly the com- 
putational programs, is very complex; this apparently has prevented their being widely used. 
We have worked out a method which is considerably simpler without loss of rigor or accuracy 
in the results. 

2. NEW METHOD OF DETERMINING THE CONSTANTS 

The principal difficulty in the use of the analytical methods described above is that one 
must solve a complicated set of nonlinear equations. Therefore, the fundamental problem is 
to find a way to avoid having to do this. 

For finding the value of N~, in principle two approaches can be used: i) either deter- 
mine it for each series of expansions for all materials; or 2) determine the value for a stan- 
dard gas and assume that it remains constant for a given temperature. In most papers, partic- 
ularly recent ones, the first approach is favored. However, the detailed highly accurate 
study in [25], as well as our analysis of the most carefully conducted experiments using the 
Burnett method, lead to the conclusion that the second approach is also valid and the results 
are no less accurate than in the first approach. In this approach the true value of N~ is 
found by first obtaining an approximate value with the help of the classical method, and then 
refining this value by various methods [18, 19, 25]. If one takes helium as the standard gas 
(as is often done), then this approach is more logical and significantly simpler than the oth- 

er method. 

Using (i) we obtain the following expression for the ratio of compressibilities for the 

j-th and (j -- l)-st expansions: 

Zj/Z~_~ ~ PjN~i~j /Ps-I  (5) 

from which we have 
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N~ i = (ZgZj_O/(PEj/Ps_~). (6) 

The thermodynamical properties of helium are now known very accurately over wide ranges 
of temperature and pressure [28]. It follows from the analysis of this data that in the usu- 
ally studied interval of temperature 140-1000~ and for pressures up to 9 MPa, an equation of 
state with the first two virial coefficients is valid (the maximum error due to ignoring high- 
er order virial coefficients is less than 0.0005%): 

Z = I-[-~P + yp2, (7) 

where B and y are related to the bulk viria! coefficients by the relations 

f$ = B/(RT), y = (C - -  Bz)/(RT) z. (8) 

Knowing the values of B and Y along the isotherm under study, one can calculate Zj for 

the corresponding experimental pressure Pj and from (6) find N=j for the j-th expansion. The 

final value of N~ is taken to be 

N |  , ) / n .  (9) 
f= l  

We use the following temperature dependence for B and C: 

B (T)=7,682-i-24,182~--45.932~2-I-36.759~3--11,121~ ~, 8 0 ~ T ~ 1 2 0 0  I<, (io) 

C(T) = 48.20 § 268.07~--403.61x~-t-415,97~3--151.85~ ~, 8 0 ~ T ~ 6 0 0  K, (11) 

where T = 100/T. 

These equations were obtained from the results of [2, 3, 29-32] and reproduce all the ex- 
perimental data with an error less than the experimental error. Starting with 140~ the 
range of pressures for which (7) is correct decreases with decreasing temperature. In this 
case it is necessary to use in addition the data of [2, 28] for calculating Zj. 

With the value of N~ known, the problem of finding the other parameters is considerably 
simplified. We write (2) in the form 

where 

PjQj = AhlQi , (12) 
A~I 

i 
Qj = N~ [-I ~i; Ah -- BhpkoRT. 

It can easily be seen that Eq. (12) has the same form as the usual virial equation. We 
note also that an increase in I/Q rigorously corresponds to a widening of the density inter- 
val. Hence (12) can be treated as a virial equation, and the problem of finding the coeffi- 
cients A k reduces to the known problem of determining the virial coefficients from the com- 
pressibility data. With the help of the methods of [33, 34], the latter problem does not rep- 
resent any serious difficulty. Hence the method of [33] allows one to find not only the Ak, 
but also establishes the optimum number of coefficients. However, it should be pointed out 
that in certain cases the method fails to cover all of the experimental data (points corre- 
sponding to the highest pressures) and some of the higher-order virial coefficients cannot be 
determined. Nevertheless, the method is useful because it gives a more rigorous determina- 
tion of the values of all of the lower-order coefficients. 

After the values At, A=, ..., A k are calculated, using the condition B: = i, we can find 
'Po, then B=, B3, etc. In cases where all of the coefficients necessary to describe the data 
cannot be determined, the compressibility is calculated from (i). 
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TABLE i. Comparison of the Values of N= Calculated According 
to the Method of the Present Paper and the Method of Hall and 
Canfield* 

Serie~i 

Series 

323,15 ~ 273,15 K 

our paper [31 our paper [31 

1,56490(5) 1,56490(2) 1,56489(2) I 1,56,490(2) 
1,56486(5) 1,56486(2), 1,56492(3) I 1,56491(2) 

113,15 K 

our paper [21 

1,56316(3) 
1,56318(5) 

223,15 K 

I 
our paper I [Zl 

J .[ 1,56486(4) 1,56484(2) 
1,56483(4) 1,56483(2) 

ios,1~ ~ [ 83,15 K 

J 1 r 
i J 1 1,56322(5) 1,56324(4) 1,56326(2) 1 56330(3) 

t,56323(6) 1,56327(4) 1,56325(5) 1,56327(3) 
1,56318(3) 
t,56320(3) 

*The values of 5(N~).I05 are given in parentheses. 

TABLE 2. Comparison of the Values of N~ Calculated According 
to the Method of the Present Paper and the Method of Waxman* 

Series 
223,15 K 

our paper [291 

1,58807(3) [ 1,58819(3) 
1,58799(3) 1,58808(2) 
1,58805(5) 1,58814(3) 
1,588o1(4) 1,5881o(3) 

273,15 K 323,15 K 

our paper [29] 

1,58816(1) 1,58823(4) 
1,58819(7) 1,58825(4) 
1,58816(3) 1,58819(4) 
1,58819(5) 1,58822(4) 

our paper [2~i 

1,58833(3) 1,58845(3) 
1,58849(2) 1,58859(2) 
1,58838(4) 1,58850(3) 
1,58834(4) 1,58846(3) 

*The values of ~(N~).I05 are given in parentheses. 

3. RESULTS AND DISCUSSION 

Cell Constant. Tables 1 and 2 give values of N~ calculated with our method, the Hall-- 
Canfield method [12], and the method of Waxman et al. [25]. It can be seen that the value of 
N= obtained with our method agrees with the Hall-Canfield value within the error of its deter- 
mination. The value of N= found using the graphical-analytic method of Waxman et al. is too 
large by i.I0 -~ (0.006%) in comparison to our value. 

The results show that our method gives N~ within 0.002-0.004% for a given series of ex- 
pansions. Discrepancies among the different series, as shown in Table 2, can be somewhat 
larger (0.004-0.007%). 

The effect of temperature on the value of N~ is of particular interest. Physically, the 
value of N~ should not depend on temperature, and this is supported by the data of [2, 3, 30]. 
But the results of [29] (see Table 2) and [35] show that N= changes rather significantly with 
temperature. All of these experiments were carried out with great care and are highly accu- 
rate; thus, it is difficult to explain the observed discrepancies in the dependence of N~ on 
temperature. Therefore, in order to increase the accuracy of the final results, we determine 
the cell constant N~ for each isotherm. 

Compressibility. Our method of calculating the compressibility was checked on data for 
argon in the temperature range 143-323~ [3, 30], for nitrogen in the range 83-273~ [2, 35], 
and for krypton in the range 223-323~ [29]. The values of Z obtained were compared with 
those calculated in the methods of Canfield [18, 19], Hall and Canfield [12], and Waxman et 
al. [25]. The results are shown in Table 3. 

It is clear from Table 3 that the values of Z calculated with our method agree closely 
with those calculated form the analytical methods of Hall-Canfield and Waxman et al., while 
the deviations in the values found by the Canfield method exceed the error in determining Z. 
We believe that the explanation is that the second constant in the Canfield method is found 
graphically from (4) with insufficient accuracy. 
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TABLE 3. Deviation of the Compressibility Calculated Accord- 
ing to the Present Method from the Values Obtained by Other 

Methods 

Literature Mean-square de- Maximum devia- 
Method source viation, % tion, % 

Hall and Canfield ~12] [ [2, 3, 301 
Waxman et al. [25] ] [291 
Canfield [18, 19] [35] 

0,015 
0,022 
0,075 

0,035 
0,048 
0,21 

TABLE 4. Virial Coefficients for Helium at 0~ and for Nitro- 
gen at --140~ Obtained by Various Methods 

Method 
Helium 1 Nitrogen 

(cm /mole) K- I Bk' (cma/m~ 

Classical [1] 

Canfield [18~ 19] 

Hoover et al. [20] 

Hall and Canfield [12] 

Barieau and Dalton [24] 

Wieiopol'ski and Warowny [13] 

Present paper 

12,012 
105,96 
12,112 

107,92 
11,96 

117,51 
12,237 
94,89 
12,243 
97,17 
12,082 

105,84 
11,985 

111,85 

--91,88 
3087,1 
--90,62 
1951,9 
--91,99 
2119,0 
--91,28 
2869,2 

--91,48 
3148, I 
--91,61 
3213,6 

The error in the value of Z is found with the help of a method described in [12]; we do 
not consider this here. We consider only the effect of N~ on the accuracy of the final value 
of the compressibility, since this gives a crucial contribution in the error in Z. Numerous 
calculations show that an error in N~ of 0.01% results in an error in Z of 0.015% at low pres- 
sures (2 to 5 bar) and as high as 0.15% for high pressures (500 to 700 bar). The correspond- 
ing errors in Z for an error in N~ of 0.006% are 0.007 and 0.08%, respectively, and an error 
in N~ of 0.002% gives corresponding errors in Z of 0.003 and 0.04%, respectively. 

The magnitude of the error resulting from inaccurate thermostatic control is easily ob- 
tained from (i) and for a given isotherm T is equal to 2AT/T, where AT is the uncertainty in 
the temperature. 

Virial Coefficient. In all of the control examples discussed above, the values of the 
lowest virial coefficients calculated in the present method agreed with the values found in 
the methods of Hall-Canfield and Waxman et al. within the limits of the total error in their 
determination. As an example, Table 4 gives the values of the second and third virial coeffi- 
cients for helium at 0~ and for nitrogen at --140~ obtained by various methods from the data 
of [35]. 

The standard deviation of one of the coefficients B k is given by the well-known formula 

oB k = o C~-~kk, where o is the mean-square deviation of the pressure calculated from (2) and Ckk 

is the diagonal element of the inverse matrix made up of values of the argument. However, in 
our method each coefficient except for the first is determined at fixed values of all of the 
previous coefficients, and therefore the error found from the above formula is not the true 
error. Detailed analysis shows that an error in N~ of 0.007% leads to errors not larger than 
0.4 cm3/mole for B= and 10% for B3; an error of 0.003% in N~ results in errors of 0.25 cm3/ 
mole and 6%, respectively. 

4. CONCLUSIONS 

We have shown that our method of determining the compressibility and lowest-order virial 
coefficients from the Burnett data is not inferior in rigor and accuracy to the methods of 
Hall-Canfield and Waxman et al. [12, 25], yet it is much simpler since it is not necessary to 
solve a complicated set of nonlinear equations. The computational program for our method was 
developed in ALGOL for the BESM-6 computer, but can also be used on the series ES computer 
with some simple modifications. 
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CONTRIBUTION OF CRYSTALLINE LATTICE DEFECTS TO 

THERMAL CONDUCTIVITY OF POROUS MATERIALS 

E. Ya. Litovskii, F. S. Kaplan, 
and A. V. Klimovich 

UDC 536.21 

The relationship of pore thermal resistance and effective thermal conductivity of 
porous media to the processes of crystalline lattice defect formation and motion 
is demonstrated. 

The effect of lattice defects on the thermal conductivity of crystalline solids is widely 
known [i, 2]. However, the dependence of thermal resistance of pores and intergrain boundaries 
in porous media on this factor has been studied insufficiently. At the same time, the thermo- 
physical properties of porous oxide systems depend decisively on the intensity of heat trans- 
fer between grains. 

A number of studies [3-6] have analyzed the temperature dependence of thermal conductiv- 
ity of such systems in rarefied gaseous media. In particular, the possibility of reversible 
change in the interparticle contact spot under the action of thermal stresses has been noted 
[3]. The effects of change in gas pressure within pores [4], and heat--mass transfer with par- 
ticipation of both the gaseous [5] and solid [6] phases have been considered. However, these 
mechanisms cannot satisfactorily explain the available experimental data, according to which, 
e.g., [7], the thermal conductivity of high-purity (99,99%) yttrium oxides in a vacuum obeys 
the same laws as do technological-grade refractories, remaining stable for long time periods. 
Results of experiments with especially pure oxides compel assumption of the existence of a 
heat-mass transfer mechanism within polycrystalline porous materials related to development 
and motion of crystalline lattice defects within the temperature gradient field near the sur- 
face of pores and microcracks. 

The effect of such processes can be analyzed conveniently using the "quasichemical ap- 
proach" of Wagner, Crager, and Wink [8], with the aid of which the crystal-structure defect 
concentration can he determined for a given temperature and gaseous medium composition. In 
the presence of a temperature gradient within the pores and microcracks, the change in the 
equilibrium constant K of the defect formation process follows a law 

K = A exp (AS~ exp (-- &H~ (1) 
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